62 research outputs found

    Ant Colony Optimization for Image Segmentation

    Get PDF

    Accurate calibration of stereo cameras for machine vision

    Get PDF
    Camera calibration is an important task for machine vision, whose goal is to obtain the internal and external parameters of each camera. With these parameters, the 3D positions of a scene point, which is identified and matched in two stereo images, can be determined by the triangulation theory. This paper presents a new accurate estimation of CCD camera parameters for machine vision. We present a fast technique to estimate the camera center with special arrangement of calibration target and the camera model is aimed at efficient computation of camera parameters considering lens distortion. Built on strict geometry constraint, our calibration method has compensated the error for distortion cased by circular features on calibration target, which gets over the relativity influence of every unknown parameters of traditional calibration way and make the error distributed among the constraint relation of parameters, in order to guarantee the accuracy and consistency of calibration results. Experimental results are provided to show that the calibration accuracy is high.Facultad de Informátic

    Bundle-specific Tractogram Distribution Estimation Using Higher-order Streamline Differential Equation

    Full text link
    Tractography traces the peak directions extracted from fiber orientation distribution (FOD) suffering from ambiguous spatial correspondences between diffusion directions and fiber geometry, which is prone to producing erroneous tracks while missing true positive connections. The peaks-based tractography methods 'locally' reconstructed streamlines in 'single to single' manner, thus lacking of global information about the trend of the whole fiber bundle. In this work, we propose a novel tractography method based on a bundle-specific tractogram distribution function by using a higher-order streamline differential equation, which reconstructs the streamline bundles in 'cluster to cluster' manner. A unified framework for any higher-order streamline differential equation is presented to describe the fiber bundles with disjoint streamlines defined based on the diffusion tensor vector field. At the global level, the tractography process is simplified as the estimation of bundle-specific tractogram distribution (BTD) coefficients by minimizing the energy optimization model, and is used to characterize the relations between BTD and diffusion tensor vector under the prior guidance by introducing the tractogram bundle information to provide anatomic priors. Experiments are performed on simulated Hough, Sine, Circle data, ISMRM 2015 Tractography Challenge data, FiberCup data, and in vivo data from the Human Connectome Project (HCP) data for qualitative and quantitative evaluation. The results demonstrate that our approach can reconstruct the complex global fiber bundles directly. BTD reduces the error deviation and accumulation at the local level and shows better results in reconstructing long-range, twisting, and large fanning tracts

    Deep-Learned Regularization and Proximal Operator for Image Compressive Sensing

    Get PDF
    Deep learning has recently been intensively studied in the context of image compressive sensing (CS) to discover and represent complicated image structures. These approaches, however, either suffer from nonflexibility for an arbitrary sampling ratio or lack an explicit deep-learned regularization term. This paper aims to solve the CS reconstruction problem by combining the deep-learned regularization term and proximal operator. We first introduce a regularization term using a carefully designed residual-regressive net, which can measure the distance between a corrupted image and a clean image set and accurately identify to which subspace the corrupted image belongs. We then address a proximal operator with a tailored dilated residual channel attention net, which enables the learned proximal operator to map the distorted image into the clean image set. We adopt an adaptive proximal selection strategy to embed the network into the loop of the CS image reconstruction algorithm. Moreover, a self-ensemble strategy is presented to improve CS recovery performance. We further utilize state evolution to analyze the effectiveness of the designed networks. Extensive experiments also demonstrate that our method can yield superior accurate reconstruction (PSNR gain over 1 dB) compared to other competing approaches while achieving the current state-of-the-art image CS reconstruction performance. The test code is available at https://github.com/zjut-gwl/CSDRCANet

    Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods

    Full text link
    The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. Diffusion MRI tractography is the only method that enables the study of the anatomy and variability of the CST pathway in human health. In this work, we explored the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. We perform experiments using diffusion MRI data from the Human Connectome Project. Four quantitative measurements including reconstruction rate, the WM-GM interface coverage, anatomical distribution of streamlines, and correlation with cortical volumes to assess the advantages and limitations of each method. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face area) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.Comment: 41 pages, 19 figure
    • …
    corecore